
Pi Servo Hat Hookup Guide 




Introduction
The SparkFun Pi Servo Hat allows your Raspberry Pi to control up to 16 
servo motors via I2C connection. This saves GPIO and lets you use the 
onboard GPIO for other purposes. Furthermore, the Pi Servo Shield adds a 
serial terminal connection which will allow you to bring up a Raspberry Pi 
without having to hook it up to a monitor and keyboard.

Required Materials

Here’s what you need to follow along with this tutorial. We suggest 
purchasing a blank microSD card rather than a NOOBS ready card, since 
the NOOBS ready cards may not have a new enough OS to support the Pi 
Zero W.

SparkFun Pi Servo HAT
 DEV-14328 

microSD Card with Adapter - 
16GB (Class 10)
 COM-13833 

Break Away Headers - 
Straight
 PRT-00116 

Page 1 of 10



In addition, you’ll want some kind of servo motor to test the setup. Try 
testing the examples provided later in the tutorial with the generic sub-micro 
servo first.

Required Tools

No special tools are required to follow this product assembly. You will need 
a soldering iron, solder, and general soldering accessories.

SparkFun Pi Servo HAT
 DEV-14328 

Wall Adapter Power Supply - 
5.1V DC 2.5A (USB Micro-B)
 TOL-13831 

Raspberry Pi GPIO Tall 
Header - 2x20
 PRT-14017 

Raspberry Pi Zero W
 DEV-14277 

Servo - Generic (Sub-Micro 
Size)
 ROB-09065 

Page 2 of 10



Suggested Reading

You may want to review these tutorials before undertaking this one.

Hardware Overview
There are only a few items of interest on the board, as it is a hat designed 
to be minimally difficult to use.

USB Micro B Connector - This connector can be used to power the servo 
motors only, or to power the servo motors as well as the Pi that is 
connected to the hat. It can also be used to connect to the Pi via serial port 
connection to avoid having to use a monitor and keyboard for setting up the 
Pi.

Soldering Iron - 30W (US, 
110V)
 TOL-09507 

Solder Lead Free - 15-gram 
Tube
 TOL-09163 

How to Solder: Through-
Hole Soldering
This tutorial covers everything you 
need to know about through-hole 
soldering. 

Raspberry Pi SPI and I2C 
Tutorial
How to use the serial buses on your 
Raspberry Pi. 

Hobby Servo Tutorial
Servos are motors that allow you to 
accurately control the rotation of the 
output shaft, opening up all kinds of 
possibilities for robotics and other 
projects. 

Getting Started with the 
Raspberry Pi Zero Wireless
Learn how to setup, configure and 
use the smallest Raspberry Pi yet, 
the Raspberry Pi Zero - Wireless. 

Page 3 of 10



Power supply isolation jumper - This jumper can be cleared (it is closed 
by default) to isolate the servo power rail from the Pi 5V power rail. Why 
would you want to do that? If there are several servos, or large servos with 
a heavy load on them, the noise created on the power supply rail by the 
servo motors can cause undesired operation in the Pi, up to a complete 
reset or shutdown. Note that, so long as the Pi is powered, the serial 
interface will still work regardless of the state of this jumper.

Servo motor pin headers - These headers are spaced out to make it 
easier to attach servo motors to them. They are pinned out in the proper 
order for most hobby-type servo motor connectors.

Hardware Assembly
We suggest soldering the male headers onto the Pi Zero W.

My favorite trick for this type of situtaion is to solder down one pin, then 
melt the solder on that pin with the iron held in my right hand and use my 
left hand to adjust the header until it sits flat as shown below. Make sure 
that you are soldering with the header’s shorter side and the longer pins are 
on the component side. After tacking down one pin, finish soldering all the 
pins down to the Pi Zero W.

Page 4 of 10



Repeat the steps with the female header and the Pi Servo Hat.

Make sure to insert the short pins from the bottom of the board and add 
solder to the component side so that the Pi Servo Hat stacks on top of the 
Pi Zero W’s male header pins. You will also need to make sure that the 
header is sitting level before soldering down all the pins.

Once the headers have been soldered, stack the Pi Servo Hat on the Pi 
Zero W. Then connect a hobby servo to a channel “0” based on the servo 
that you are using. Try looking at the hobby servo’s datasheet or referring 
to some of the standard servo connector pinouts listed in this tutorial. Using 
a sufficient 5V wall adapter, we can power the Pi Zero W. Plug the wall 
adapter into a wall outlet for power and connect the micro-B connector 
labeled as the “PWR IN” port on the Pi Zero W.

Software - Python
We’ll go over in some detail here how to access and use the pi servo hat in 
Python.

Full example code is available in the product GitHub repository.

Set Up Access to SMBus Resources

First point: in most OS level interactions, the I C bus is referred to as 
SMBus. Thus we get our first lines of code. This imports the smbus module, 
creates an object of type SMBus , and attaches it to bus “1” of the Pi’s 
various SMBuses.

import smbus
bus = smbus.SMBus(1)

2

Page 5 of 10



We have to tell the program the part’s address. By default, it is 0x20, so set 
a variable to that for later use.

addr = 0x20

Next, we want to enable the PWM chip and tell it to automatically increment 
addresses after a write (that lets us do single-operation multi-byte writes).

bus.write_byte_data(addr, 0, 0x20)
bus.write_byte_data(addr, 0xfe, 0x1e)

Write Values to the PWM Registers

That’s all the setup that needs to be done. From here on out, we can write 
data to the PWM chip and expect to have it respond. Here’s an example.

bus.write_word_data(addr, 0x06, 0)
bus.write_word_data(addr, 0x08, 1250)

The first write is to the “start time” register for channel 0. By default, the 
PWM frequency of the chip is 200Hz, or one pulse every 5ms. The start 
time register determines when the pulse goes high in the 5ms cycle. All 
channels are synchronized to that cycle. Generally, this should be written to 
0. The second write is to the “stop time” register, and it controls when the 
pulse should go low. The range for this value is from 0 to 4095, and each 
count represents one slice of that 5ms period (5ms/4095), or about 1.2us. 
Thus, the value of 1250 written above represents about 1.5ms of high time 
per 5ms period.

Servo motors get their control signal from that pulse width. Generally 
speaking, a pulse width of 1.5ms yields a “neutral” position, halfway 
between the extremes of the motor’s range. 1.0ms yields approximately 90 
degrees off center, and 2.0ms yields -90 degrees off center. In practice, 
those values may be slightly more or less than 90 degrees, and the motor 
may be capable of slightly more or less than 90 degrees of motion in either 
direction.

To address other channels, simply increase the address of the two registers 
above by 4. Thus, start time for channel 1 is 0x0A, for channel 2 is 0x0E, 
channel 3 is 0x12, etc. and stop time address for channel 1 is 0x0C, for 
channel 2 is 0x10, channel 3 is 0x14, etc. See the table below.

Channel # Start Address Stop Address

Ch 0 0x06 0x08

Ch 1 0x0A 0x0C

Ch 2 0x0E 0x10

Ch 3 0x12 0x14

Ch 4 0x16 0x18

Ch 5 0x1A 0x1C

Ch 6 0x1E 0x20

Ch 7 0x22 0x24

Ch 8 0x26 0x28

Ch 9 0x2A 0x2C

Page 6 of 10



Ch 10 0x2E 0x30

Ch 11 0x32 0x34

Ch 12 0x36 0x38

Ch 13 0x3A 0x3C

Ch 14 0x3E 0x40

Ch 15 0x42 0x44

If you write a 0 to the start address, every degree of offset from 90 degrees 
requires 4.6 counts written to the stop address. In other words, multiply the 
number of degrees offset from neutral you wish to achieve by 4.6, then 
either add or subtract that result from 1250, depending on the direction of 
motion you wish. For example, a 45 degree offset from center would be 207 
(45x4.6) counts either more or less than 1250, depending upon the 
direction you desire the motion to be in.

Software - C++
We’ll go over in some detail here how to access and use the pi servo hat in 
C++. Note that it’s much harder than it is in Python, so maybe now’s the 
time to learn Python?

Full example code is available in the product GitHub repository.

Include the Necessary Files

We’ll start by going over the files which must be included.

#include <unistd.h> // required for I2C device access
#include <fcntl.h>  // required for I2C device configuration
#include <sys/ioctl.h> // required for I2C device usage
#include <linux/i2c­dev.h> // required for constant definition
s
#include <stdio.h>  // required for printf statements

Open the I2C Device File

Start by opening the i2c­1 file in /dev for reading and writing.

char *filename = (char*)"/dev/i2c­1"; // Define the filename
int file_i2c = open(filename, O_RDWR); // open file for R/W

You may wish to check the value returned by the open() function to make 
sure the file was opened successfully. Successful opening of the file results 
in a positive integer. Otherwise, the result will be negative.

if (file_i2c < 0)
{ 
printf("Failed to open file!");
return ­1;

} 

Set Up the Slave Address for the Write

Unlike Python (and Arduino), where the slave address is set on a per-
transaction basis, we’ll be setting up an “until further notice” address. To do 
this, we use the ioctl() function:

Page 7 of 10



int addr = 0x40;    // PCA9685 address
ioctl(file_i2c, I2C_SLAVE, addr); // Set the I2C address for u
pcoming

//  transactions

ioctl() is a general purpose function not specifically limited to working 
with I2C.

Configure the PCA9685 Chip for Proper 
Operation

The default setup of the PCA9685 chip is not quite right for our purposes. 
We need to write to a couple of registers on the chip to make things right.

First we must enable the chip, turning on the PWM output. This is 
accomplished by writing the value 0x20 to register 0.

buffer[0] = 0;    // target register
buffer[1] = 0x20; // desired value
length = 2;       // number of bytes, including address
write(file_i2c, buffer, length); // initiate write

Next, we must enable multi-byte writing, as we’ll be writing two bytes at a 
time later when we set the PWM values. This time we don’t need to set the 
length variable as it’s already correctly configured.

buffer[0] = 0xfe;
buffer[1] = 0x1e;
write(file_i2c, buffer, length);

Write Values to the PWM Registers

That’s all the setup that needs to be done. From here on out, we can write 
data to the PWM chip and expect to have it respond. Here’s an example.

buffer[0] = 0x06;  // "start time" reg for channel 0
buffer[1] = 0;     // We want the pulse to start at time t=0
buffer[2] = 0;
length = 3;        // 3 bytes total written
write(file_i2c, buffer, length); // initiate the write

buffer[0] = 0x08;   // "stop time" reg for channel 0
buffer[1] = 1250 & 0xff; // The "low" byte comes first...
buffer[2] = (1250>>8) & 0xff; // followed by the high byte.
write(file_i2c, buffer, length); // Initiate the write.

The first write is to the “start time” register for channel 0. By default, the 
PWM frequency of the chip is 200Hz, or one pulse every 5ms. The start 
time register determines when the pulse goes high in the 5ms cycle. All 
channels are synchronized to that cycle. Generally, this should be written to 
0. The second write is to the “stop time” register, and it controls when the 
pulse should go low. The range for this value is from 0 to 4095, and each 
count represents one slice of that 5ms period (5ms/4095), or about 1.2us. 
Thus, the value of 1250 written above represents about 1.5ms of high time 
per 5ms period.

Servo motors get their control signal from that pulse width. Generally 
speaking, a pulse width of 1.5ms yields a “neutral” position, halfway 
between the extremes of the motor’s range. 1.0ms yields approximately 90 
degrees off center, and 2.0ms yields -90 degrees off center. In practice, 

Page 8 of 10



those values may be slightly more or less than 90 degrees, and the motor 
may be capable of slightly more or less than 90 degrees of motion in either 
direction.

To address other channels, simply increase the address of the two registers 
above by 4. Thus, start time for channel 1 is 0x0A, for channel 2 is 0x0E, 
channel 3 is 0x12, etc. and stop time address for channel 1 is 0x0C, for 
channel 2 is 0x10, channel 3 is 0x14, etc. See the table below.

Channel # Start Address Stop Address

Ch 0 0x06 0x08

Ch 1 0x0A 0x0C

Ch 2 0x0E 0x10

Ch 3 0x12 0x14

Ch 4 0x16 0x18

Ch 5 0x1A 0x1C

Ch 6 0x1E 0x20

Ch 7 0x22 0x24

Ch 8 0x26 0x28

Ch 9 0x2A 0x2C

Ch 10 0x2E 0x30

Ch 11 0x32 0x34

Ch 12 0x36 0x38

Ch 13 0x3A 0x3C

Ch 14 0x3E 0x40

Ch 15 0x42 0x44

If you write a 0 to the start address, every degree of offset from 90 degrees 
requires 4.6 counts written to the stop address. In other words, multiply the 
number of degrees offset from neutral you wish to achieve by 4.6, then 
either add or subtract that result from 1250, depending on the direction of 
motion you wish. For example, a 45 degree offset from center would be 207 
(45x4.6) counts either more or less than 1250, depending upon the 
direction you desire the motion to be in.

Resources and Going Further
Now that you’ve successfully got your SparkFun Pi Servo Hat up and 
running, it’s time to incorporate it into your own project!

For more information, check out the resources below:

• SparkFun Pi Servo Hat Schematic (PDF)
• SparkFun Pi Servo Hat Eagle Files (ZIP)
• PCA9685 Datasheet (PDF) - To get a better feel for exactly how 

PCA9685 works and additional functionality it offers.
• SparkFun Pi Servo HAT GitHub Repository

Page 9 of 10



• Setting Up the Pi Zero Wireless Pan-Tilt Camera Tutorial - A kit that 
uses the Pi Servo Hat in a pan/tilt camera setup.

For additional software example using the PCA9685, you can refer to the 
hookup guide for the Edison PWM Block, which uses the same hardware 
and is conceptually very similar.

Need some inspiration for your next project? Check out some of these 
related tutorials:

SparkFun Blocks for Intel® 
Edison - PWM
A quick overview of the features of 
the PWM Block. 

Raspberry Pi Twitter Monitor
How to use a Raspberry Pi to 
monitor Twitter for hashtags and 
blink an LED. 

Getting Started with the 
BrickPi
How to connect Lego Mindstorms to 
the Raspberry Pi using the BrickPi. 

Bark Back Interactive Pet 
Monitor
Monitor and interact with pets 
through this dog bark detector 
project based on the Raspberry Pi! 

Getting Started with the 
Raspberry Pi Zero Wireless
Learn how to setup, configure and 
use the smallest Raspberry Pi yet, 
the Raspberry Pi Zero - Wireless. 

Page 10 of 10

9/18/2017https://learn.sparkfun.com/tutorials/pi-servo-hat-hookup-guide?_ga=2.232659291.5354813...




