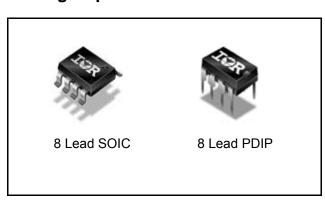


Self-Oscillating Half-Bridge Driver

Features

- Floating channel designed for bootstrap operation
- Integrated 600V half-bridge gate driver
- 15.6V zener clamp on Vcc
- True micropower start up
- Tighter initial dead time control
- Low temperature coefficient dead time
- Shutdown feature (1/6th Vcc) on CT pin
- Increased undervoltage lockout Hysteresis (1V)
- Lower power level-shifting circuit
- Constant LO, HO pulse widths at startup
- Lower di/dt gate driver for better noise immunity
- Low side output in phase with RT
- Excellent latch immunity on all inputs and outputs
- ESD protection on all leads


Product Summary

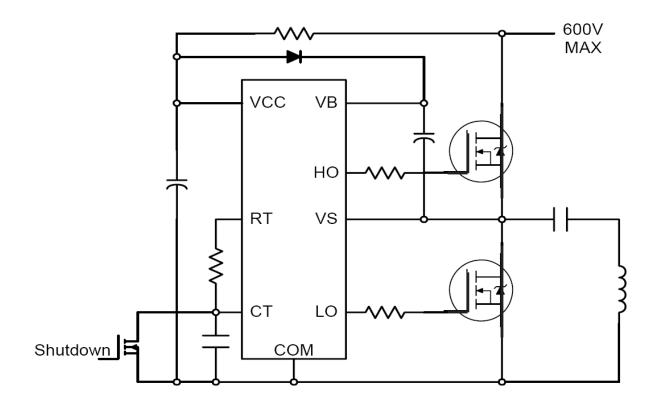
Voffset	600V max.
Duty Cycle	50%
T _r / T _f	80 / 40 ns
V_{CLAMP}	15.6V
Dead time (typ.)	1.2 μs
lo+/lo- (typ.)	180mA / 260mA

Description

The IR25603(S) incorporates a high voltage half-bridge gate driver with a front end oscillator similar to the industry standard CMOS 555 timer. A shutdown feature has been designed into the CT pin, so that both gate driver outputs can be disabled using a low voltage control signal. In addition, the gate driver output pulse widths are the same once the rising undervoltage lockout threshold on Vcc has been reached, resulting in a more stable profile of frequency vs time at startup. Special attention has been paid to maximizing the latch immunity of the device and providing comprehensive ESD protection on all pins.

Package Options

Ordering Information


Danie Bard Namel an	Package Type	Standar	d Pack	On lawy Lie Dow Normal and
Base Part Number	r ackage Type	Form	Quantity	Orderable Part Number
IR25603SPBF	SO8N	Tube	95	IR25603SPBF
IR25603SPBF	SO8N	Tape and Reel	2500	IR25603STRPBF
IR25603PBF	PDIP8	Tube	50	IR25603PBF

www.irf.com © 2013 International Rectifier March 26, 2013

Typical Connection Diagram

2 www.irf.com

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Definition			Units
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage	;	V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
V_{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	V
V _{CC}	Low side and logic fixed supply voltage		-0.3	25	
V _{RT}	R _T pin voltage		-0.3	V _{CC} + 0.3	
V _{CT}	C _T pin voltage	<u> </u>		V _{CC} + 0.3	
Icc	Supply current+		_	25	т Л
I _{RT}	R _T pin current		-5	5	mA
dVs/dt	Allowable offset supply voltage transie	nt	_	50	V/ns
D-	Package power dissipation @ TA ≤	8 lead PDIP	_	1	W
P _D	+25°C	8 lead SOIC	_	0.625	VV
D#b	Thermal resistance, junction to	8 lead PDIP	_	125	°C \\\\
RtnjA	Rth _{JA} ambient		_	200	°C/W
TJ	Junction temperature		_	150	
T _S	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 secon	nds)		300	

Recommended Operating Conditions

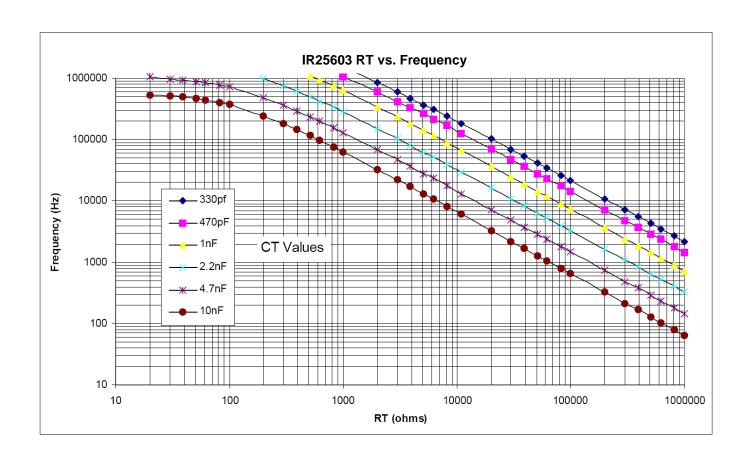
www.irf.com

For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _{CC} – 0.7	V_{CLAMP}	
Vs	Steady state high side floating supply offset voltage	††	600	V
V _{CC}	Supply voltage	10	V_{CLAMP}	
Icc	Supply current	+++	5	mA
T _A	Ambient temperature	-40	125	°C

 $[\]dagger$ This IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the V_{CLAMP} specified in the Electrical Characteristics section.

^{††} Care should be taken to avoid output switching conditions where the VS node flies inductively below ground by more than 5V.


^{†††} Enough current should be supplied to the V_{CC} pin of the IC to keep the internal 15.6V zener diode clamping the voltage at this pin.

Recommended Component Values

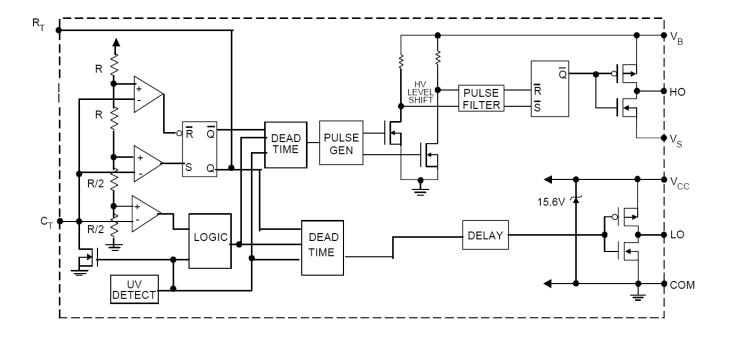
www.irf.com

Symbol	Component	Min.	Max.	Units
R _T	Timing resistor value	10	_	kΩ
C _T	C _T pin capacitor value	330		pF

Electrical Characteristics

5 www.irf.com

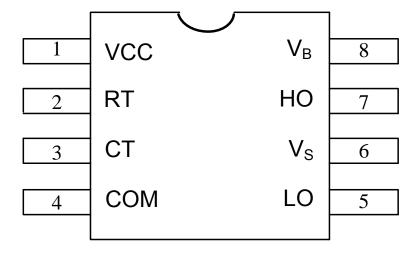
 V_{BIAS} (V_{CC} , V_{BS}) = 12V, CL = 1000 pF, CT = 1nF and T_A = 25°C unless otherwise specified.


Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8.1	9.0	9.9		
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.2	8.0	8.8	V	
V _{CCUVH}	V _{CC} undervoltage hysteresis	0.5	1.0	1.5		
I _{QCCUV}	Micropower startup V _{CC} supply current		75	150	uA	V _{CC} ≤ V _{CCUV} -
IQCC	Quiescent V _{CC} supply current	_	500	950		
V_{CLAMP}	V _{CC} zener clamp voltage	14.4	15.6	16.8	V	I _{CC} = 5mA
Floating S	upply Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
I _{QBSUV}	Micropower startup V _{BS} supply current	_	0	10	μA	V _{CC} ≤ V _{CCUV} -
I _{QBS}	Quiescent V _{BS} supply current	_	30	50		
V _{BSMIN}	Minimum required V _{BS} voltage for proper functionality from R _T to HO	_	4.0	5.0	V	V _{CC} = V _{CCUV+} + 0.1V
I _{LK}	Offset supply leakage current	_	_	50	uA	$V_{B} = V_{S} = 600V$
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
		19.4	20	20.6		R _T = 36.9kΩ
fosc	Oscillator frequency	94	100	106	kHz	$R_T = 7.43k\Omega$
d	R _T pin duty cycle	48	50	52	%	f _O < 100kHz
I _{CT}	C _T pin current	<u> </u>	0.001	1.0	uA	
I _{CTUV}	UV-mode C _T pin pulldown current	0.3	0.7	1.2	mA	V _{CC} = 7V
V _{CT+}	Upper C _T ramp voltage threshold	_	8	_		
V _{CT} -	Lower C _T ramp voltage threshold	_	4	_	V	
V _{CTSD}	C _T voltage shutdown threshold	1.8	2.1	2.4		
\ <i>/</i>	High-level R _T output voltage, V _{CC} -	_	10	50		I _{RT} = 100 μA
V _{RT+}	V _{RT}	_	100	300		I _{RT} = 1mA
			10	50		I _{RT} = 100 μA
	Low-level R _T output voltage	_	100	300	mV	I _{RT} = 1mA
V _{RT} -			_	100		V _{CC} ≤ V _{CCUV} -
V _{RT-}	UV-mode R _T output voltage		0	100		*CC = *CCUV-
	UV-mode R_T output voltage SD-Mode R_T output voltage, V_{CC} - V_{RT}	_	10	50		I _{RT} = 100 μA, V _{CT} = 0V

Electrical Characteristics (cont.)

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VOH	High level output voltage, V _{BIAS} -V _O	_	0	100		I _O = 0A
VOL	Low-level output voltage, V _O	_	0	100	mV	I _O = 0A
VOL_UV	UV-mode output voltage, V _O	_	0	100		$I_{O} = 0A$ $V_{CC} \le V_{CCUV}$
t _r	Output rise time	_	80	150		
t _f	Output fall time	_	45	100	ns	
t _{sd}	Shutdown propagation delay		660			
t _d	Output dead time (HO or LO)	0.75	1.20	1.65	μS	_
I _{O+}	Output source current	_	180	_	m A	
I _{O-}	Output sink current	<u> </u>	260	_	mA -	

Functional Block Diagram



Lead Definitions

Symbol	Description
V _C C	Logic and internal gate drive supply voltage
R _T	Oscillator timing resistor input
Ст	Oscillator timing capacitor input
COM	IC power and signal ground
LO	Low side gate driver output
V _S	High voltage floating supply return
НО	High side gate driver output
V _B	High side gate driver floating supply

Lead Assignments

Application Information and Additional Details

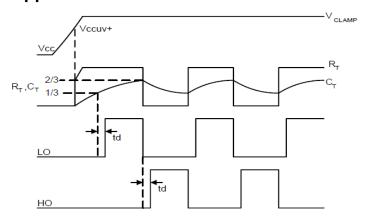


Figure 1. Input/Output Timing Diagram

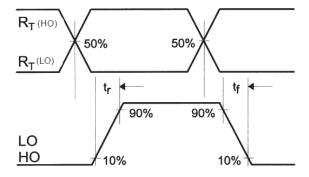
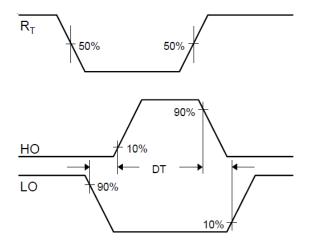
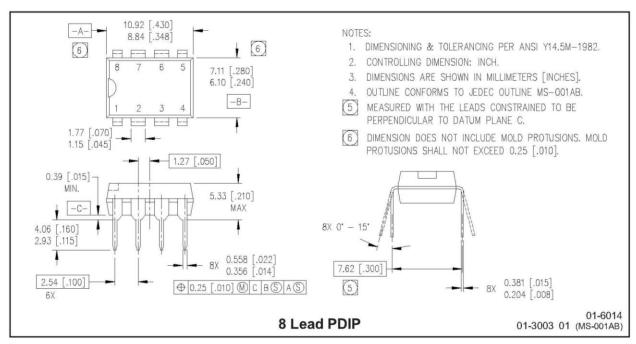
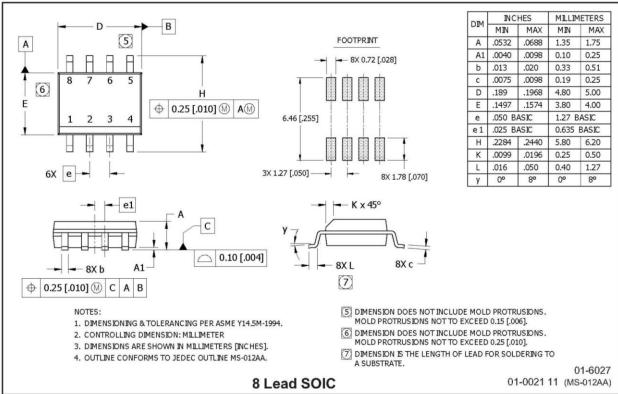
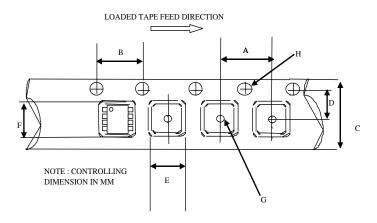



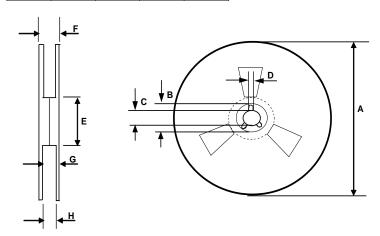
Figure 2. Switching Time Waveform Definitions




Figure 3. Deadtime Waveform Definitions

March 26, 2013

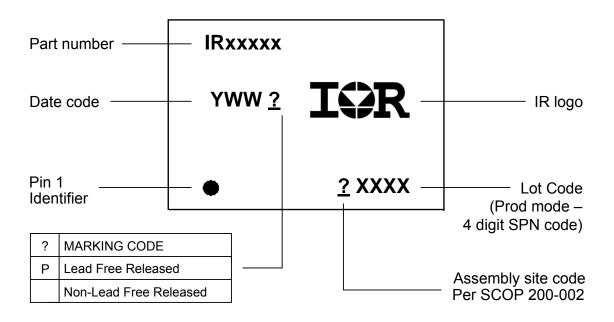

Package Details



Tape and Reel Details, SO8N

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 8SOICN

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

11 <u>www.irf.com</u> © 2013 International Rectifier March 26, 2013

Qualification Information[†]

	Industrial ^{††} (per JEDEC JESD 47)
Qualification Level	Comments: This family of ICs has passed JEDEC's
	Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.
Moisture Sensitivity Level	SOIC8N MSL2 ^{†††} (per IPC/JEDEC J-STD 020)
moisture densitivity Level	PDIP8 Not applicable (non-surface mount package style)
RoHS Compliant	Yes

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105